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A B S T R A C T  

We study contraction groups for automorphisms of totally disconnected 
locally compact groups using the scale of the automorphism as a tool. 
The contraction group is shown to be unbounded when the inverse auto- 
morphism has non-trivial scale and this scale is shown to be the inverse 
value of the modular function on the closure of the contraction group at 
the automorphism. The closure of the contraction group is represented 
as acting on a homogenous tree and closed contraction groups are char- 
acterised. 

1. I n t r o d u c t i o n  

Interest  in contract ion groups and related concepts  has been s t imulated by ap- 

plications in the theory  of  probabi l i ty  measures and r andom walks on groups 

and in representat ion theory. 

In representat ion theory, contract ion groups bring about  the Mautner  phe- 

nomenon.  This is manifest  in Wang ' s  examinat ion  [Wan84] of the phenomenon  

in p-adic Lie groups, though  more  in the background  in Moore 's  t r ea tment  of 

the Lie group case [Moo80]. To our  knowledge the first to  define and s tudy 

contrac t ion groups (in a slightly more general context  than  ours, see [MR76]) 

was Miiller-RSmer, who did so to s tudy  a representat ion theoret ic question as 

well (the Wiener  and Tauber  proper ty  of a group algebra). 
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When studying semistable convolution semigroups of probability measures on 

locally compact groups, contraction groups arise naturally [HS88, DS91]. For 

this reason a lot of preliminary work on contraction groups was done by Siebert, 

and most of the known results are either derived or referenced in [Sie86]. Propo- 

sition 4.2 in [Sie86] reduces the study of locally compact contraction groups to a 

separate study of the connected and totally disconnected cases. The connected 

case is covered by Corollary 2.4 in loc. cit. In some totally disconnected groups 

the contraction groups are closed and these are studied in [Sie89], see also Re- 

mark 3.33 below. We contribute to the full picture by treating general totally 

disconnected groups. 

Just as Lie techniques are used to study contraction groups in the connected 

case, so the notions of scale and tidy subgroup (introduced in [Wi194]) are useful 

in the totally disconnected case. The relevant properties of tidy subgroups 

are summarized in Section 2. Their connection to contraction subgroups and 

related concepts is explored in Section 3. The basic properties are collected in 

Subsection 3.1. This subsection culminates in our main result, Theorem 3.8, 

whose proof rests on the assumption that  the group is metrizable. 

Therefore, in the following sections we assume that  all groups considered are 

totally disconnected locally compact metric unless explicitly stated otherwise. 

From the reinterpretation of the scale function as the modular function re- 

stricted to various subgroups (Proposition 3.21) we infer that  contraction groups 

of automorphisms whose inverse has non-trivial scale are unbounded (Corol- 

lary 3.24). We succeed in Proposition 3.32 to characterize closed contraction 

groups. Theorem 4.2 in Section 4 then represents contraction groups as groups 

of automorphisms of a homogeneous tree. 

We stick to the following conventions: 0 is a natural number. The relations C, 

<l etc. always imply strict inclusion. Any automorphism of a topological group 

will be assumed to be a homeomorphism. By "X is stable under a" we mean 

a ( X )  = X whereas "X is invariant under a" means a (X )  C_ X. The modular 

function Aa  of a locally compact topological group G is defined by the equation 

# ( a ( M) )  = A c ( a ) p ( M )  where p is a left Haar measure on G. We use e for the 

unit element of a group and 1 for the trivial group. The function ]. ] stands for 

the absolute value on complex or p-adic numbers, as the case may be. 
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2. Basic facts a b o u t  the  scale funct ion 

Tidy subgroups for an automorphism c~ of a totally disconnected locally compact 

group G provide a local description of c~. For a subgroup V of G define subgroups 

V+, V_ of V and V++, V__ of G by 

V=t= -- N s+n(v) and V+i -- U s+n(v+)" 
n>0 n>0  

The automorphism s magnifies V+ and shrinks V_, that is, s(V+) /> V+ and 

s - l (V_)  >/V_. We let V0 denote the "neutral" part: 

.o := . +  o . _ :  N s iv/: N sJ(._)= N s-J(v+/ 
kEZ jEN jEN 

It is stable under s. 

De/inition 2.1: Let G be a totally disconnected locally compact group and s 

an automorphism of G. A compact-open subgroup V is called t idy  for s in G 

(or t idy  for short if c~ is understood) if it satisfies 

(T1) V = V+V_ (= V_V+), 
(T2) V__ (and V++) are closed. 

The integer 

sG(s) := Is(V+): V+I = Is(V):  U n s(V)l 

is called the scale of  s.  The function sc: G -9 5t obtained by restricting 

attention to inner automorphisms will be called the scale funct ion of G. 

The scale of an automorphism is well defined by Theorem 2 in [Wi194]. 

Observe that a subgroup V which is tidy for s will be tidy for s -1 as well. 

Tidy subgroups exist. They may be found by running the following algorithm. 

ALGOnITHM 2.2 (cf. proof of Theorem 3.1 in [Wil01]): 

[0] Choose a compact open subgroup O ~< G. 
k i [1] Let kO := n~=0 ~ (O). We have kO+ = O+ and ko_ = ak(O_). For some 

n E N (hence for all n' >_ n) the group no satisfies (T1). Put O' := ~O. 

[2] Let s := {x r G: si(x) E O' for almost all i E Z} and L := s 

[3] Form O* := {x E O': Ix1-1 E O'L Vl E L} and define 0" := O*L. The 

group O" is tidy and we output O". 
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Analyzing the above algorithm (cf. [Wil01, Theorem 3.1]) one arrives at the 

alternative characterization of the scale function as a minimal distortion value: 

so(a)  = min{Ia(O) : O A a(O)]: O a compact, open subgroup}. 

The following simple criterion ensuring tidiness will be used repeatedly in the 

sequel. 

Example 2.3: A compact, open subgroup V satisfying V = V_ is tidy. | 

It follows immediately from the definition of the scale that  a has a tidy 

subgroup satisfying this criterion if and only if s(a) = 1. 

3. C o n t r a c t i o n  g roups  a n d  parabo l ics  

Let a be an automorphism of a locally compact group G. This section links the 

subgroups tidy for a to two other subgroups having global dynamical definitions 

in terms of a. 

3.1. DEFINITIONS AND BASIC PROPERTIES. We define the parabolic group 

and the contraction group of a and begin to elucidate links between the various 

groups. Tidy subgroup methods show that  the parabolic group is closed. They 

are also used in the proof of Theorem 3.8, which is fundamental for all of our 

results on contraction groups. 

Remark 3.1: If V is a compact, open subgroup of G, then we have 

V_ C_ P~ := {x �9 G: {an(x): n �9 N} is bounded} 

and V_ = V VI Ps if V is tidy for a (see Lemma 9 in [Wi194]). 

The group Ps is closed (Proposition 3 parts (iii) and (ii) in [Wi194] show this) 

and obviously contains the group 

us := {x �9 V: an(x) e}, 

which need not be closed (see Example 3.13(2)). 

Notation 3.2: We call Ps and Us respectively the pa rabo l i c  subgroup and the 

c o n t r a c t i o n  group associated to a. We also let Ms := Ps n P~-I and call it 

the Levi  fac to r  attached to a. The Levi factor is the set of all elements of the 

ambient group whose (a)-orbit is bounded. If the automorphism a is inner and 

is conjugation by g, we relax notation and write Pg, Ug and Mg. 



Vol. 142, 2004 CONTRACTION GROUPS AND SCALES OF AUTOMORPHISMS 225 

The term 'parabolic group' is suggested by Example 3.13 to follow. The name 

'contraction group', however, is standard; see [MR76, Wan84, Sie86, Sie89]. 

Results about contraction groups, notably in the case where Us is closed, may 

be found in these papers. The next result is one such. We shall use it frequently. 

LEMMA 3.3 ([Wan84], Proposition 2.1): Let G be a locally compact group and 

let a be an automorphism of G such that Us = G. Then a is compactly 

contractive, that is, for any compact subset C of G and any neighborhood 0 of 

e we have a~(C) C 0 for all n >_ N(C,O) .  

Since Us is a-stable, this will imply that whenever the ambient group is locally 

compact and Us is closed, the restriction of a to Us is compactly contractive. 

Since a shrinks V_, one feels that there should be an even closer connection 

between V_ and Us than the one between V_ and Ps displayed by Remark 

3.1. Before establishing this, we note some e l emen ta ry  p roper t i e s  of  the  

groups Us, P~ and Ms: 

U~, ,=Us  and P s . = P s  f o r a l l n E N \ { 0 } ;  

Uid = 1 and Pid = G ,  /~(U,) = Uzsz-1, /~(Ps) = Pzsz-l .  

Further, as is plain from the definitions, when computing the contraction groups 

and parabolics inside a subgroup (stable under the automorphism in question) 

we get the intersections of the contraction groups and parabolics in the ambient 

group respectively with the subgroup. 

Obviously Ms = Ms-1 and V0 <~ V M Ms for every compact open subgroup 

with equality if V is tidy thanks to Remark 3.1. 

PROPOSITION 3.4: Let G be a locally compact group and let a be an automor- 

phism. Then Us is normal in Ps, hence UsM~ <. P~. 

Proof: Let x 

name it /4, is 

neighborhood 

from a'~(u) E 

UkeK kO'k-1 

E Ps, u E Us be given. By definition of Ps the set {a~(x): n E N}, 

compact. Given an open neighborhood O of e, choose an open 

O' of e satisfying UkeA'kO'k-1 C_ 0 ([HR79, II.4.9]). Then 
O' for all n _> no we infer an(xux -1) = an(x)an(u)an(x)  -1 E 

C O, proving that indeed xux -1 E Us. I 

Theorem II.4.9 from [HR79] can also be used to prove the first claim in the 

following result, which is useful in computations. 

LEMMA 3.5: Let G be a locally compact group and let d, v E G be such that 

dv = vd and (v) is bounded. Then Udv : Ud and Pdv ---- Pd. I 

We note the following simple consequence. 
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COROLLARY 3.6: Let G be a locally compact group and g E G be given. Then 

either of Ug # 1 or Pg # G implies that (g) = (g) is infinite cyclic. | 

Next, we investigate the behavior of contraction groups and parabolics under 

quotient maps. Recall that  a continuous surjection f :  X -+ Y between topolog- 

ical spaces is an ident i f ica t ion ,  respectively a pe r fec t  map ,  if Y carries the 

quotient topology with respect to f ,  respectively if it is a closed map with all 

fibres compact. If f is a homomorphism of topological groups it is an identifica- 

tion iff it is a continuous open surjection. It is perfect, if in addition its kernel 

is compact. 

PROPOSITION 3.7: Let p: G --+ G be a homomorphism of totally disconnected 

locally compact metric groups which is an identification. Let a be an automor- 

phism of G leaving the kernel of p stable and thus inducing an automorphism 

-~ of G. Then p(Ua) = U~. 

Proposition 3.7 is obtained as a corollary of the next result taking H :-- kerp. 

We first introduce some notation. Let H be a subset of the topological group G. 

Call a sequence of elements (Xn)neN in G convergent to e modulo H, if for any 

e-neighbourhood V there is an integer Nv such that  V H V  contains all terms 

of the subsequence (Xn)n>_Nv and write limneN Xn -- e rood H in this case. Let 

U~/H := {x E G: limncNan(x) = e m o d H } .  If H is a neutral subgroup of G, 

that  is, if for each e-neighborhood V there is an e-neighbourhood W such that  

W H  C_ HV,  in particular if H is compact, then Ua/H is a group. 

THEOREM 3.8: Let G be a totally disconnected locally compact metric group, a 

an automorphism of G and H an a-stable closed subgroup of G. Then Uc~/H = 

U~H. 

The criterion provided by the following lemma is useful in the proof. 

LEMMA 3.9: Let (Xn)ncN be a sequence in a locally compact group G and let 

H be a subset of G. Then the following statements hold. 

(1) Let {xn: n E N) be bounded. If  H contains each accumulation point of 

(Xn),~eN then (Xn)ncN converges to e modulo H. 

(2) If  (Xn)ncN converges to e modulo H, then each accumulation point of 

(Xn)ncN is contained in H. 

(3) If  {Xn: n E N) is bounded and H is closed then (x~)neN converges to e 

modulo H iff H contains each accumulation point of (Xn)ncN. 

Proof of Lemma 3.9: (2) follows from the definitions, while (3) is implied by 

the statements (1) and (2). It remains to prove (1). 
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We argue by contradiction. Let W be a neighborhood of H such that  its 

complement contains infinitely many elements of the set {Xn: n E N}. Since 

{Xn: n E N} is bounded, the subsequence (x,~)ieN of (Xn)neN formed by the el- 

ements not in W has an accumulation point, which is in H by assumption. Then 

W must contain infinitely many elements of the set {xn~ : i E N} contradicting 

its definition. I 

Proof of Theorem 3.8: The right hand side is contained in the left hand side. 

To show the opposite inclusion, we need to show that  whenever an(x) converges 

to e modulo H, then there is an element h of H,  such that  an(xh) converges to 

e. 

Since G is metric, there is a decreasing sequence (O(~))~=1 of compact open 

subgroups of G with trivial intersection. Put  O (~ := G. We use induction on 

i E N to show that  there are sequences of elements (Y~)ieN in G and natural 

numbers (N~)ieN such that  

(1) Y0 = x, Yi+l E yi(O~ i) M H) for all i C 1~, 

(2) an(yi) E O (/) for all n > N~, 

(3) limneN c~n(yi) = e mod O~ i) M H. 

Putting Yo := x and No := 0 provides a basis for the induction. For the 

induction step we will use the following lemma. 

LEMMA 3.10: Let G be a totally disconnected locally compact group, a an 

automorphism of G, H an a-stable closed subgroup of G and x an element of 

U~/H. Then, for any compact open subgroup 0 of G there is an element h in 
H and a na tura /number  N such that an(xh) is contained in O for each n >_ N. 

The sequence (an(xh))ncN converges to e modulo Oo M H. 

Proof of Lemma 3.10: Applying step 1 of the Algorithm 2.2 to O N H, we may 

assume that  the intersection of O with H satisfies property (T1) with respect to 

a, hence O M H = (O M H)_(O M H)+.  Using continuity of a,  choose a compact 

open subgroup V of O such that  a(V) C_ O. Then a(V(O N H)) C_ 0(~(0 M H). 
Let N be such that  a n (x) is contained in V H  for all n _> N. 

Choose an element ho in H such that  o~N(xho) E V. We will complete ho 

recursively to a sequence (hi) of elements in ho(O M H) such that  

aN+J(xh~) E V(OMH)  f o r 0 _ < j _ < i .  

The recursion starts with h0. Suppose then, that  h0 up to hk have already been 

constructed to satisfy this condition. Then, using 

a(O n H) c_ (0 n H)~((O n H)+) 
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we obtain 

aN+k+l(xhk) E a(V(O N H)) C C_ Oa(O n H) C_ Oa((O M H)+). 

Choose/k+l in (O n H)+ such that  a(aN+k(xhk)l[.~l) E O and put hk+l := 

hka-(g+k) (/k~l)" Then the element hk+l is in ho(OMH), and a y+k+l(xhk+l)  C 
O. Further, since xhk is in the same H-coset as x, aN+k+l(xhk+l) C VH, by 

the definition of N. 

Hence a N+k+l (xhk+l) E 0 M VH = V(O M H). For all natural numbers j 

less than k + 1 we have ag+J(xhk+l) = ag+J(xhk)aJ-k(lk~l)  E V(O N H) as 
well, showing the existence of our announced sequence. 

The sequence (xhi)i~r~ is bounded, hence has an accumulation point xh in xH. 
Then aN+J(xh) is in V(O M H) for any natural number j because V(O M H) is 

closed. In particular, it is in O, showing the first claim. 

By the first claim, which we already proved, {an(xh): n E l~I} is bounded. 

Continuity of a and a -1 imply that  the set of accumulation points of 

(a n (xh))neN is an a-stable subset of O. Hence each of these accumulation points 

belongs to O0. On the other hand, (an(x))neN hence (an(xh))neN converges 

to e modulo H. This can be reformulated using part 3 of Lemma 3.9 to read 

that  each accumulation point of (an(xh))ner~ belongs to H. We conclude that  

each accumulation point of (an(xh))neN belongs to H M O0. Applying part 3 

of Lemma 3.9 once more we see that  the s e q u e n c e  (an(Xh))nEN converges to e 

modulo the compact a-stable subgroup H M Oo of H, and we have established 

the second claim. The lemma is proved. I 

Returning to the proof of the theorem, assume that  the induction hypothesis 

has been established for i. We apply the lemma with O~ ~) M H in place of H, 

O (i+1) in place of O and yi in place of x. We deduce that  there is an element 

hi E O~ i) M H and an integer N~+I such that  an(yih~) is contained in O (i+1) 

for each n _> N~+I. Furthermore, the sequence (a'~(yih~)),~eN converges to e 
modulo r)(i+l) "~0 MH. Putting Yi+l := yih~, this gives the induction statement for 

i + 1 proving that  the statement holds for all positive integers. 

Since yi+l E yi(O~ i) M H) and O (i+1) ~< O (i), (yi(O~ i) ;'1H))i~ 1 is a decreas- 

ing sequence of compact sets and Ni~l Yi(O~ i) M H) is a single point because 

Ni~l O(i) is trivial. Let {y} = ~i~=1 y~(O(o ~) M H). Then for every n 

an(y) e an(yi(O~ i) [-I g)) : an(yi)an(O(oi) N g).  

Since O~ i) M H is a-stable, this set equals an(yi)(O(o i) M g),  which is contained 

in O~ i) for every n >_ Ni. Hence a n (y) converges to e as n tends to oc. Since 
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Yo = x, Yi+l E yiH and H is closed, x - l y  E H and so the proof is completed 

by setting h := x- ly .  | 

Groups of the form U~/H with H compact arise naturally when studying 

(semi-)stable convolution semigroups of probability measures on the ambient 

group; see [HS88, DS91]. Theorem 3.8 above generalizes Theorem 2.4 in [DS91]. 

Theorem 3.1 in [HS88] covers the case where H is a compact subgroup of a Lie 

group. We pose the question whether Theorem 3.8 can be generalised to include 

the non-metric case. 

The analogue of the above Theorem for parabolic groups and their Levi factors 

does not hold. Indeed, there are discrete counterexamples. 

Example 3.11: Let G be a finitely generated discrete group such that G 

[G,G] = Z(G) and G/[G,G] is torsion free. For example, take G to be the 

group of integral strict upper triangular matrices of rank 3. Take L := [G, G] 

and let g be some element of G. Since G/L is abelian, the parabolic group 

(and its Levi factor) attached to gL E G/L  is the whole group. We will show 

that Pg surjects onto PgL only in the trivial case g E L, providing the desired 

counterexample. 

The assumption that Pg surjects onto Pgn : e implies that G = PgL = 

PgZ(G) = Pg. Hence every element of G has only a finite number, m(x) say, 

of (g}-conjugates and we infer that [gm(~),x] = e. But G is finitely generated, 

thus there is a positive M such that [gM, x] =- e holds for all x in G. In other 

words, gM is in Z(G). Since G/Z(G) = G/[G,G] is torsion free, this implies 

that g belongs to the center of G, that is, it belongs to L as claimed. 

Though Proposition 3.7 does not generalize to parabolic groups and Levi 

factors, the following weaker result is obvious. 

PROPOSITION 3.12: Let p: G --+ G be a perfect homomorphism of locally 
compact groups and let ~ be an automorphism of G leaving the kernel of p 

stable and thus inducing an automorphism -~ of-G. Then p-l(p~)  = pa and 
p-I(M~-) = M s .  In particular, p(Pa) = Pa and p(Ma) = Ma | 

We conclude the subsection with some examples illustrating these concepts. 

Example 3.13: The following examples present different types of behavior 

which can occur. The first and second of these should provide the reader with 

geometrical intuition on what is going on. 

(1) Let k be a locally compact, totally disconnected field, e.g. the p-adic 

numbers Qp. Let G be SLn(k), equipped with the subspace topology in k n2. 
Then G is a totally disconnected locally compact group. 
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In the case where G = SLn(Qp), it follows from Lemma 3.5 that, when 

computing Ug and Pg, we may suppose that g is semisimple. That means 

that, after conjugation, we may assume that g is diagonal over some finite 

extension field of Qp (also see Proposition 3.23). We may further assume that 

the valuations of the diagonal entries are in decreasing order. It is easy to 

compute Ug, Pg and Mg with this normalization and one finds that Ug is a closed 

(algebraic) normal subgroup of Pg consisting of unipotent matrices, and that 

P9 is the semidirect product of Mg and Ug. If Ug is bounded, we have Ug = 1. 

If all eigenvalues have distinct absolute value, Mg, Pg and Ug will be the groups 

of diagonal, upper and strictly upper triangular matrices, respectively. If G 

is any semisimple group, then essentially the same results hold for the group 

G(k): Pg is the group of rational points of a k-parabolic subgroup; Ug is the 

group of rational points of its unipotent radical; and M 9 is the group of rational 

points of the centralizer of the unique k-split torus contained in Pg n Pg-,. 

(This is essentially contained in Lemma 2 of [Pra82]. One should note that 

the hypothesis that G is almost k-simple is not used in its proof and that the 

hypothesis on the eigenvalues of Ad(g) is only needed to ensure that Pg is a 

proper subgroup.) 

The scale function was computed for general and special linear groups over 

local skew fields (and some other linear groups) by G15ckner in [G1598a]. This 

list includes the group SLn(Qp) discussed above. In that group the subgroup 

id + Mn(pZp) is shown to be tidy for diagonal g. It turns out that s(g) is 

the product of the absolute values of those eigenvalues of Ad(g) which have 

absolute value greater than or equal to 1. The scale function is computed for 

connected semisimple algebraic groups over arbitrary non-Archimedean fields in 

Proposition 3.23. If the characteristic of the field is 0 one can alternatively use 

Lie methods to compute the scale function as done in [G1598b]. 

(2) Let T be the homogeneous tree of degree q + 1. Taking fixators of finite sets 

of vertices as basic neighborhoods of the identity induces a totally disconnected 

locally compact group topology on Aut(T). Each automorphism of T either has 

a fixed point, not necessarily a vertex (elliptic case) or a stable line, which is 

unique and is called the axis of g (hyperbolic case). 

An elliptic element g is topologically periodic, hence has Ug = 1, Pg = 
Aut(T) = Mg and trivial scale. The stabilizer of any point fixed by g is a 

tidy subgroup since it contains g. If g is hyperbolic, then it is easily shown that 

Pg is the stabilizer of the repelling end c_ of g. An automorphism x is in Ug 

if and only if for each r > 0 there is a point p(x, r) on the axis of g such that 
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all points within distance r of the ray [p(x, r), e_) are fixed by x. In this case, 

Ug is unbounded but not closed (the closure of Ug is the set of elliptic elements 

fixing c_). The group Mg being the fixator of the two ends fixed by g, we easily 

see that  Mg n Ug is nontrivial. The scale of a hyperbolic element is ql(g), where 

l(g) is the length of the translation induced by g on its axis. The fixator of a 

segment of length at least one on the axis of g is tidy for g (one can show using 

Lemma 3.31(3) that  every tidy subgroup for g is essentially of that  form). This 

example was treated in detail in section 3 of [Wil94]. 

(3) Let H be a totally disconnected locally compact group and O a compact, 

open subgroup. For example, we may take both H and O equal to a finite 

group F carrying the discrete topology. The shift map i ~ i + 1 on Z induces 

an automorphism a of the restricted product G := 1-Iiex H[O (for definition 

see editorial comment after entry Addle on page 43 in [Haz88]). Any compact 

subset stable under the stfift a is contained in O z = l-Lcz 0 and any open 

stable set contains O z. Therefore, O z is the unique a-stable compact, open 

subgroup of G, and thus the only subgroup tidy for a. As a corollary, a has 

scale 1. The parabolic subgroup P ,  and Levi-factor M~ are both equal to 

O z. The contraction group U~ is the subgroup of all (xi)i~z E O z such that  

xi >i-~-~ e. This is a nontrivial and bounded group which is not closed. 

3 .2 .  T H E  DIFFERENCE BETWEEN SHRINKING AND CONTRACTING. F r o m  n o w  

on we assume that  the ambient group G is totally disconnected and m e t r i z a b l e  

unless explicitly stated otherwise. We establish the connection between that  

part, V_, of a compact, open subgroup V on which a is shrinking and the 

corresponding contraction group Us. The notion of eontractivity is stronger 

than that  of shrinking, as the first lemma demonstrates. 

LEMMA 3.14: Let V be a compact, open subgroup of a totally disconnected 

locally compact group. Then Us <~ V__. 

Proof: Take v E Us. Then there is an N such that  an(v) belongs to (the 

e-neighborhood) V for every n _> N. Thus a N (v) E V_ and v E V__. | 

Since V_ _C Pa (see Remark 3.1), the following result is an immediate 

consequence of the lemma and Proposition 3.4. 

COROLLARY 3.15: Let V be a compact, open subgroup of a totally disconnected 

locally compact group. Then Us <3 V__ , Us N V_ <3 V_ and Us N Vo <3 Vo . | 

We now make the interdependence between Us and V__ more precise. Clearly, 

UaVo <<. V__ and Lemma 3.3 implies that  V__ C_ Us only when Vo = 1. In fact, 
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V0 is the 'difference' between V__ and Us. 

PROPOSITION 3.16: For a compact, open subgroup V, V__ = UsVo. 

Proof: We are left to show V__ C_ UaVo. For each n E N and v E V we 

have an(v) e Ny__NaJ(v) for all sufficiently large n. Since NN=_NaJ(v) is 

compact and decreases to Vo with N,  (an(v))neN converges to e modulo V0 for 

all v C V__. The result follows from Theorem 3.8. I 

The next result may be considered a global version of the above propositon. 

COROLLARY 3.17: M, Us = Ps, in other words Us/M, = P~. 

Proof: Using Proposition 3.4 it suffices to show Pa C_ U~/M,,. Let v be in 

Ps.  By definition of Ps the sequence (an(v))nEN is bounded. Let w be an 

accumulation point, i.e. a limit of a subsequence. Then for any m E Z the 

point am(w) as well is a limit of a subsequence and belongs to the compact 

set {an(v): n E N}. This means w C Ms. Since the set {an(v): n E N} is 

bounded and Ms is closed, we may apply part  3 of Lemma 3.9 to conclude that  

v E Us/M~ as claimed. I 

As might be expected, the topology of the quotient space Ps/Us is induced 

from Ms. 

LEMMA 3.18: The natural  homomorphism Ms --+ Pa/Us is an identitication. 

Proof: The homomorphism is continuous and surjective. To show tl~at it is 

open, it suffices to find an open subgroup of Ms such that  the restriction of the 

homomorphism to this subgroup is open. 

Let V be a subgroup tidy for a in the ambient group. Then V0 equals V M Ms 

and therefore is a compact open subgroup of Ms. We first claim that  the 

image O of V0 is open: The inverse image of O is VoU~ <. Ps. The equations 

VoU~ = V__ >>. V_ = V M Ps show that  VoUs is an open hence closed subgroup 

of Ps.  It follows that  VoUs must equal VoUs and is therefore open. This proves 

that  O is open as claimed. 

By the open mapping theorem ([HR79, II.(5.29)]) the map V0 -+ O is necessar- 

ily open. Since O was shown to be open, this implies that  the map Vo -+ Ps/Us 

is open. I 

Lemma 3.29 and Corollary 3.27 will show that  the kernel of the homomor- 

phism Ms ~ P~/Us is compact. It then follows that  this homomorphism is a 

perfect map. 



Vol. 142, 2004 CONTRACTION GROUPS AND SCALES OF AUTOMORPHISMS 233 

3.3. REINTERPRETATION OF THE SCALE FUNCTION. We will investigate the 

links between contraction groups, parabolics and tidy subgroups further after 

giving alternative descriptions of the scale of an automorphism. 

The next two lemmas are immediate consequences of Example 2.3 and Remark 

3.1. 

LEMMA 3.19: Let V be a compact, open subgroup of a totally disconnected 

locally compact group tidy for the automorphism a. Then for all closed a- 

stable subgroups H of Pa 

( V N H ) _ = V _ N H = V N P ~ N H = V N H  

is tidy for a in H. ] 

LEMMA 3.20: Let V = V_ be a compact, open subgroup of the totally 

disconnected locally compact group H and let N <3 H be stable under the 

automorphism a of H. Then the image q(V) C_ H / N  under the canonical map 

satisfies 

q(V_) C_ q(V)_ C_ q(V) = q(V_), 

and hence is tidy for the induced automorphism -5: H / N  -+ H/N .  I 

The reason for the name 'scale' is that s(a) is the factor by which a scales 

up V+ when V is tidy. Thus s(a) is just the value of the modular function at 

the restriction of a to V++. The next result extends this interpretation of the 
scale. 

PROPOSITION 3.21: Let N<3H be a a-stable closed subgroup of P~ and let V 

be tidy for a in the ambient group G. Then writing q for the canonical map 

H --+ H / N  and ~, respectively al, for the induced automorphisms on H / N  and 

N, we have 

(1) SH(a- ' )  = ~H(a-1) ,  

(2) s , ( a  -1) = s , / N ( ~ - l ) s N ( a ~ l ) ,  

(3) 8G(a - l )  ----- Sp,~(o~ -1) ---- SV__(O~ -1) ~-- 8~(~(a-l) .  

Proof: (1) By Lemma 3.19 we have (V N H)_ = V N H and this group is tidy 

for a in H. Hence AH(a -1) = sH(a-1).  

(2) By Lemma 3.20 we have q(V N H)_ = q(V n H) and this group is tidy for 

in H/N.  Hence AH/N(-~ -1) = 8 H / N ( ~ - I ) .  Additionally, applying (1) with 
H := N implies AN(a~ 1) = sN(a/1 ). 
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Since the modular function satisfies an equation of the form to be proved, 

substituting the values of the scale function for those of the modular function 

in that  equation proves (2). 

(3) We have s a ( a  - I )  = [a-l(V_) : V_ I = sp~(a -1) since V_ = V R P ~  = 
(V N P~)_. The same argument works when P~ is replaced by V__. Now (2) 

applied with H := Pa and N := U~ gives sp~(a -1) = Sp~/U~(~-l)su,~(a~x), 

leaving us to prove Sp~/-U, (~-1) = 1. 

As the product of the scale of the restriction of an automorphism to a normal 

subgroup and the scale of the induced automorphism on the quotient always 

divides the scale of the automorphism by Proposition 4.7 in [Wil01], it is enough 

to show SM~(a -1) = 1, since Pa/U~ is a quotient of Ms by Lemma 3.18. We 

compute 

Observing that  

SM.(a -~) = IO~-* (Mo, n V)_ :  (Ms n V)_ I. 

M~nV = P a n  Pa-1 nV=V+nV_ =V0, 

this implies SM.(a -1) = IVo : V0] = 1, as had to be shown. | 

Combination of (3) and (1) above implies that  sa(g) = A F _ l ( g ) .  This 

enables us to compute the scale function of the group of rational points of a 

semisimple algebraic group G over a local field of positive characteristic. We 

start with the following lemma. 

LEMMA 3.22: Ira  and 13 are two commuting automorphisms then 

(1) ~ ( ~ )  < s(~)s(~),  
(2) s(Z) = 1 = s(9 -1)  implies s(~Z) = s(~). 

Proof: As (2) follows from (1), it suffices to prove (1). We may suppose that  a 

and/3 are inner. Using Theorem 3.4 in [Will, choose a compact open subgroup 

V, which is tidy for a and ft. The result follows from Proposition 7.2 in [GW02]. 
| 

We now treat a slightly more general case than announced in Example 3.13. 

PROPOSITION 3.23: Let k be a nonarchimedean local field and let G be a 

Zariski-connected reductive k-group. For any dement  g of G(k) its scale s(g) 
equals the product of the absolute values of those eigenvalues of Ad(g) whose 
valuation is greater than 1 (counted with their proper multiplicities). 

Proof: Observe first that  the claim will be true for an element g whenever it is 

true for a positive power of g. Likewise, using part (2) of Lemma 3.22, we see 
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that  we may replace g by g~ whenever g - i f  is a compact element commuting 

with g. If k has positive characteristic some positive power of g is semisimple. If 

the characteristic of k is 0, g has a Jordan-Chevalley decomposition g = gsg~ = 
g~,gs with gs, gu E G(k) where gs is semisimple and gu is unipotent. Since 

unipotents are compact elements, we may replace g by its semisimple part gs. 
So, regardless of the characteristic, we may assume from the outset that  g is 

semisimple. 

Let S be the smallest torus of G containing g, that  is, let S be the Zariski- 

closure of the group generated by g. From this characterization it is immediate 

that  S(k) is Zariski-dense in S. By the Galois-criterion S is defined over k. Its 

largest split, respectively anisotropic, tori Sd and Sa are defined over k as well. 

Write g as g'a, where g' is in Sd(k) and a is in Sa(k). By our introductory 

remarks we may suppose that  g = g' is in fact contained in a k-split torus. 

We are going to use the Remarque after Corollaire 3.18 in [BT65]. Let a be 

the set of roots of ~(Sd, G) with [~r(g)[ > 1. It is a closed (even connected) 

subset and by [Bou68, Chapitre VI,w Proposition 22] there is an ordering on 

O(Sd, G) such that  all the roots in a are positive. Hence ~r is unipotent. The set 

of k-rational points of the associated unipotent group U~ is equal to Ug-~, hence 

Ug-~ is already closed. This follows from the fact that  Lie(G) is the direct sum 

of Lie(U~), Lie(U_~) and the sum of the eigenspaces of g to eigenvalues with 

valuation 1. In particular, each eigenspace of g to an eigenvalue with valuation 

greater than 1 is contained in Lie(U~). 

Arrange the elements b l , . . . , b m  of cr in increasing order and put ai := 

{bi , . . . ,  bin}. The group U~ is defined and split over k. More precisely, U~ = 

U~ 1 /> . . .  /> U .... is a filtration by unipotent k-groups whose successive quo- 

tients admit a structure of k-vector space such that  any element x of Sd acts 

by scalar multiplication with bi(x) on U ~ / U ~ +  1 . It follows that  Au_~ (g) = 

Au~(k)(g ) = [I~ml [bi(g)] d~, where di = dim(U,~(k)/Uo,+l(k)) .  This is exactly 

what we claimed. | 

As a further result, contraction groups are usually unbounded. 

PROPOSITION 3.24: The following statements are equivalent: 
(I) sG(a-l) = I. 

(2) Us is bounded. 

(3) VO tidy for a: O C_ P s - ' .  

(4) 30  t idy for a: 0 C_ P s - ' .  

(5) Ps-1 is open. 
(A) Us C_ Ms. 
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(B) M s  = Ps. 

(C)  U s ---- U 0 : =  U s n US--1. 

Proof: We will first prove equivalence of the statements (1)-(5). The proof 

that the characterizations (A)-(C) are equivalent uses some results yet to come 

but are listed here for convenience of reference. These equivalences will not be 

used until later. 

(2) ~ (1): This is immediate combining parts (1) and (3) of Proposition 3.21 

(with H := Us). We prove that (1) implies (2) and (3). Take O tidy for a. The 

equality 1 = SG(O~ -1)  : Io~-l(O) : o~-1(O) n O I is equivalent to O _D o l - l ( o )  

and to O+ = O. The first of these implies O__ C_ UieN a- i (O)  c_ O, hence that 

Us C_ O is bounded, giving (2). Fhrther, O = O+ = O N Ps-1 gives O C_ Ps_l, 

hence (3) follows. 

Obviously (3) =~ (4) ~ (5). Finally, to prove that (5) implies (1) take O 

tidy for a in Ps-1. Since we assume that Ps-1 is open, O is tidy for c~ in the 

ambient group G as well and we get O+ = O N Ps-  1 = O which is equivalent to 

1 = s a ( a  -1) as has already been seen. 

We now prove equivalence of (2) and the statements (A) (C). If we assume 

(2) then using a-invariance of Us we get that Uiez cti(Us) = us  is bounded. 

The definition of Ms then gives Us C_ Ms, that is (A). 

The statements (A) and (B) are equivalent thanks to Corollary 3.17. For the 

remaining implications we need some results yet to be proved. If we assume 

(B), then since Ms is closed Us = Us n Ms which equals U0 by Lemma 3.29 

and we have derived (C). Assuming (C) we have Us contained in U0, which is 

a compact group by Corollary 3.27 giving (2). The proof is complete. I 

3.4. SMALL TIDY SUBGROUPS. The contraction group, Us, is closed if and 

only if there are arbitrarily small subgroups tidy for a. This and numerous 

other equivalences are established below in Theorem 3.32. Careful examination 

of the tidying procedure, Algorithm 2.2, is required for the proofs. 

COROLLARY 3.25 (to Proposition 3.16): ff  V is a tidy subgroup produced by 

the Algorithm 2.2 from the compact, open subgroup O, then V__ = 0__ .  

Proof: We go through the steps of the Algorithm 2.2. Step 1 produces a 

subgroup O' such that O'_ = a n (0_) ,  hence 

O' = O__. 
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The group L = s produced in step 2 of the algorithm equals V0 = O~ t by 

Lemma 3.8 in [Wil01] and is easily seen, by its definition, to be contained in 

O~_. Hence, by Proposition 3.16, 

V__ = U~,Vo = Uo, L <~ U,~OL_ = OL_ = 0 _ _ .  

To show the reverse inclusion we proceed to step 3 of the algorithm. Lemma 

3.4 in [Wil01] implies 

0"__ = 0 '__ .  

From O* ~ V we get immediately O* ~ V_ and O*___ ~ V__, hence 

0 _ _ = 0 '  . . . .  =O* ~<V__=V__ 

since V is tidy. We are done. | 

As an immediate consequence, we have the following characterisation of the 

closure of Us. 

THEOREM 3.26: Us = N{V--: V is tidy for a}. 

Proof." We already know Us C_ V__ for every compact open subgroup V. Since 

V__ is closed for V tidy, the inclusion Us C N{V--: V is tidy for a} follows. 

Now let v ~t Us. We have to find a subgroup V tidy for a such that v 

V__. There is a compact open subgroup O such that vO gt Us = 0. Then 

vON U~Oo = 0 and it follows that 

v ~t U,~Oo = 0 _ _ .  

Thanks to Corollary 3.25, v ~t V__, where V is the tidy subgroup constructed 

from O. We are done. II 

One would expect the set of elements where a and a -1 are contracting to be 

small. 

COROLLARY 3.27: 

and hence to 

m m 

The group Uo, defined as Us N U . - I ,  is equal to 

~)r V is tidy for 

~ { v :  v is tidy for c~} 
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as well. In particular, it is compact. 

Proof'. First observe that if V is tidy, then so is an(V) for any integer n. 

Therefore 

N{v: v is tidy for a} = n N ao(v) = N{vo: v is tidy for a}. 
V tidy nCZ 

This is a compact group. It remains to show that it equals Uo. 

For this, note that, by Theorem 3.26, U0 is the intersection of all pairs V__ 

and W++ where V and W run through all tidy subgroups. 

Since V0 C_ V__ and W0 C_ W++, it follows that 

n{Vo: V is tidy for a} C_ U0. 

The next lemma implies the reverse inclusion. 

LEMMA 3.28: If  V is a tidy subgroup of a totally disconnected locally compact 

group, then V++ N V__ = Vo. 

Proof'. As already seen Vo = V+ M V_ C_ V++ N V__ always. Conversely, if 

x E V++ M V__ then 

xEak(v+)Mal (V_)  for a l l k > k 0 ~ 0 _ > 1 0 > l .  

Now a-k(x)  E V+ C_ V Vk > ko and a- l(x)  E V_ C_ V V1 <: 10. Therefore x E/:.  

Assuming V to be tidy gives s = V0, implying that x C Vo. The proof of the 

corollary is complete. I I 

Considering Example 3.13(3) with H = O acted on by the shift a, we see that 

Uo M Ua-1 is dense in G = O z and consequently U0 = G. This example appears 

in connection with the investigation of semistable probability laws on G. 

We will now turn to the question of existence of arbitrarily small tidy sub- 

groups for an automorphism a. Corollary 3.27 shows that Uo is an obstruction 

to their existence. We attempt now to make this more precise. 

LEMMA 3.29: Us M P~-I = U~ M M~ = Uo. 

Proof: The proof is an easy direct computation using Theorem 3.26 and that 
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V0 = V N Ms for tidy V: 

Uo =U,~nU~,_, (ZUo~nPo~-i = U .  nMo, : N Y__nM,~ 
Ytidy 

: N (v__ N Ms) = N (U a - , ( v  N Ps)N Ms) 
V tidy V tidy iEN 

: N = N N , o=Vo. , 
V tidy iEN V tidy V tidy 

As a Corollary we get a nice factorization of U~. 

COROLLARY 3.30: Us = UoU~, In other words Us -- Us~Go. 

Proof: Let a l  be the restriction of a to Us. Then U~ 1 = Us, Ms1 = U0 by 

Lemma 3.29 and P s i  = U s  and the claim follows by Corollary 3.17. I 

After a further lemma we will be able to characterize the automorphisms 

with arbitrarily small tidy subgroups. Section 2 of [Wil] describes a tidying 

procedure which differs from Algorithm 2.2 by taking in step 3 the group K := 

Us n Ps-1 C_ Uo instead of L (constructed in step 2, which becomes superfluous). 

That  is, we now put O* := {x E O': kxk -1 E O'K Vk E K} and O" := O*K. 

According to Lemma 3.3(1) in [Will, O* is a compact open subgroup. It is 

smaller than O. We work with this algorithm in the proof of the lemma below. 

It is proved in loc. cat. that  the outputs of the two algorithms are the same. 

One may wonder whether the reason for this is that  K = U0. It follows from 

(2) and (1) below that  this is indeed the case. 

LEMMA 3.31: 

(1) vsnPs- ,  =U. nM~=UsnUo. 
(2) U~ N Ms = Uo; in particular, Uo is the unique tidy subgroup for a 

restricted to Uo. 

(3) A compact, open subgroup is tidy if and only if it satisfies (T1) and 

contains Uo. 

Proof: The first statement is easily derived from the descriptions of Uo in 

Lemma 3.29. 

From (1) we get that  Us N Ms equals the group K introduced above. It 

follows from Lemma 3.29 that  K C U0, so assume we are given an element x 

not in K.  Since K is closed, there is a compact open subgroup O such that  

xO n K is empty. In other words, x does not belong to KO. 



240 u. BAUMGARTNER AND G. A. WILLIS Isr. J. Math. 

Applying the modified algorithm to O, we have KO ~_ KO* = O" is a tidy 

subgroup, and x q~ KO implies that  x is not in U0 by Corollary 3.27. Thus 

Uo C_ K and therefore Uo = K = Us n Ms as claimed in (2). 

To see the remaining part of sub-claim (2) observe that  the contraction group 

of the restriction of a to U0 is Us n Uo and similarly for a -1 . Then, by what has 

already been shown, Us N UoNUs-I n Uo = Us N MsnUa-~ N Ms = U0nUo = 

U0 and there can be no proper subgroup of U0 tidy for the restriction of a to 

Uo by Corollary 3.27. 

We turn to (3). The conditions are clearly necessary for a subgroup O to 

be tidy. If they are satisfied, the variant of the tidying-up procedure described 

above leaves the compact open subgroup unchanged. This shows that  O is tidy. 
| 

In all examples examined so far, Uo is equal to Us N Us-1. We do not know 

whether this holds in general. 

The existence of arbitrarily small tidy subgroups for a given automorphism 

has many equivalent reformulations. 

THEOREM 3.32: The following conditions are equivalent: 

(1) Us is closed. 

(1') U~-I is closed. 

(2) U s n M s =  l. 

(2') Vs-~ n Ms = 1. 

(3) Us n M s =  1. 

(3') Us- ,  n Ms -- 1. 

(4) Uo = 1. 

(4') There are arbitrarily small tidy subgroups for a. 

(5) For all compact, open 0 <<. G there is a k such that kO is tidy. 

(5') A compact, open subgroup satisfying (T1) satisfies (T2) as well. 

(6) Ps = Ms ~< Us topologically. 

(6') Ps-1 = Ms ~< U~-i topologically. 

Proof: (5') r (5): Assume (5'). Run step 1 of Algorithm 2.2 on the 

given O to obtain another compact, open subgroup of the stated form satisfying 

(T1) hence (T2) by assumption. Conversely, assume that  O satisfies (T1). By 

assumption O' := n~_o ai(O) is tidy. As already used several times O~_ = O+ 

and O' = ak(O_),  hence O++ = O' and O__ O' _ ++ = __ are closed since O' is 

tidy. Hence O is tidy and (T1) is shown to imply (T2). 
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Since the procedure applied to O in (5) shrinks the compact, open subgroups 

in question, we have that (5) ~ (4'), which evidently implies (4). Lemma 3.29 

shows that (4), (3) and (3') are all equivalent. 

If we assume that Us is not closed, then 1 ~ U0 by Corollary 3.30. Hence 

Ms NUs ~ 1 and we have shown that (3) implies (1). By symmetry, (3') implies 
(1') as well. 

Assuming (1) we find for any compact, open subgroup V that V__ = VoUs 

is closed, since Vo is compact. Assuming V satisfies (T1) we get from [Wi194, 

Lemma 3(b)] that V++ is closed as well. This means that property (T2) is 

automatic once (T1) is known to hold, i.e. (5'). By symmetry again (1') implies 

(5'). So far we have established equivalence of all conditions listed except (2), 

(2'), (6) and (6'). 

It is trivial that (3) implies (2) and (3') implies (2'). Lemma 3.31(2) gives that 

(2) implies (4). Symmetrically (2') implies (4). Together with (4) ~ (3), 

this leaves to prove the equivalence of (6) and (6') with the other conditions: 

By symmetry it suffices to prove that (6) is equivalent to (2). Property (6) 

evidently implies (2). Assume (2) to conclude that Ps is the semidirect product 

of Ms and Us as an abstract group. We may then apply Proposition 6.17 from 

[RD81]. Our claim is that (6) holds, which is statement (d) in that Proposition. 

It is shown there that it is equivalent to the statement (b) that the map Ms 

Ps ~Us obtained by restriction of the quotient map modulo the normal subgroup 

Us is a topological isomorphism. Since we know that (2) implies (1), this map is 

the one considered in Lemma 3.18, where we showed that it is an identification 
in general. Under the assumption of (2) however, the kernel of this map is trivial 
and (b), thus (6), is established. We are done. | 

We now list some examples where the conditions of Theorem 3.32 hold. 

Remark 3.33: All contraction groups for general/inner automorphisms are 
closed in the following cases. 

(1) Groups with trivial contraction groups, among them: 

(a) discrete groups, with respect to all and 

(b) SIN-groups with respect to inner  automorphisms. 

(c) MAP-groups with respect to inner  automorphisms. (The 

von-Neumann-kernel of a locally compact group contains all con- 

traction groups of inner automorphisms: Let p be a continuous 

finite-dimensional unitary representation of the group. Consider an 

element, x, say. Since p(x) is unitary, the corresponding eigenvalues 
have absolute value 1. A trivial modification of Lemma II.(3.2) from 
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(2) 

(3) 

[Mar89] shows that Ux fixes each eigenvector of p(x). Since there is 

a basis of the representation space consisting of eigenvectors of p(x), 
we are done.) 

(d) nilpotent-by-compact groups. These are distal by [Ros79, Proposi- 

tion 3]. This, by its definition (loc. cir., introduction), easily implies 

that all contraction groups of inner automorphisms are trivial. 

Any (totally disconnected) locally compact group having an open sub- 

group satisfying the ascending chain condition on its closed subgroups. 

Thanks to ([Wan84, Lemma 3.2]) the group then satisfies the condition 

(1) of Theorem 3.32 with respect to any automorphism ([Wan84, Lemma 

3.2]). This criterion applies to any p-adic Lie group ([Wan84, Theorem 

3.5]), hence to any analytic group over any nonarchimedian field of char- 

acteristic 0. 

Any closed subgroup of a linear group over a local field with respect to 

inner  automorphisms. By the introductory remark it is enough to prove 

this for the group SLn, since we may embed any closed linear group therein 

as a closed subgroup. We have already seen in Example 3.13(1) that a 

contraction subgroup for an element of SLn is an algebraic subgroup, 

hence is closed. 

Further examples with all contraction groups for inner automorphisms closed 

may be obtained from the above list by forming projective limits and restricted 

products. 

Remark 3.34: 
(1) Note that item l(c) above shows that all totally disconnected locally 

compact MAP-groups have trivial inner contraction groups, hence scale 

function identically one (they are uniscalar) if they are metric. This is 

an improvement over the main result of [LR68]. 

(2) Let G + be the closed subgroup generated by all contraction groups of 

inner automorphisms. It is stable under any (bicontinuous) automorphism 

of G, hence is in particular normal. As a consequence of Proposition 3.7, 

for metric groups G, G/G + is uniscalar. The scale function should thus 

characterize best the groups satisfying G = G +. Every non-uniscalar 

topologically simple group will belong to this class by Proposition 3.24, 

but no solvable group will because G + c_ [G, G]. This last remark suggests 

that we define subgroups G n+ by iterating the definition of G +. 
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4. T h e  t r e e - r e p r e s e n t a t i o n  t h e o r e m  

We will show that,  if V is tidy for a,  then V__ extended by the cyclic group 

generated by a,  that  is, V__ x (a), has a representation onto some closed sub- 

group of the automorphism group of a homogeneous tree. This representation 

can be used to analyse groups of this type, which are the simplest non-uniscalar 

groups. 

Although this is not the approach we shall take, this representation is an 

instance of a general construction in the Bass-Serre theory of group actions on 

graphs which is described in [Ser80] and [DD89]. Since a: V_ -+ a(V_) is an 

injection into V_, the group V__ ~ (a) is isomorphic to the HNN extension 

V_ * t, w h e r e t = a - l : a ( V _ ) ~ V _ .  
,~(v_) 

The HNN extension is defined in [DD89, Exam- 

ple 3.5(v)] to be the fundamental group of the 

graph of groups at right. It is shown in [Ser80] 

and [DD89] how to represent HNN extensions on 

trees. For completeness, we shall describe the tree 

and the action of V__ • (a) directly. Elements of 

V__ ~ (a) will be denoted va TM. 

inclusion 

--1 
% 

The tree will be denoted by T. Its vertices are the left V_-cosets in V__ >4 (a}. 

Distinct vertices xV_ and yV_ are linked by a directed edge xV_ ~ yV_ if and 

only if 

(1) yV_ c xV_c  = (xc )a -1 (V_). 

Equivalently, there is an edge from vamV_ to wanV_ if and only if n = m + 1 

and w E vain(V-). Since a - l (V_)  is the union of s(c~ -1) V_-cosets, there are 

s(a -1) out-edges from the vertex xV_. Since xV_ C ( (xa-1)a)  oz-l(V_) there 

is one edge into xV_, from the vertex (xc~-l)V_. Hence each vertex in T has 

degree s(a -1) + 1. 

We show next that  T is a tree when a has infinite order. For each n E Z, 

denote the vertex o~ny_ by V (n). Then V (n) = c~n-la(V_)a C a n - l v - a  and it 

follows from (1) that  

�9 . . ,  V (-2), V(-1), V(0), V(1), V(2),. . .  

is an infinite path, call it P,  in T. Consider a general vertex vamV_ in T, where 
v C a-n(V-) .  Then vamV_ = amwV_, where w = a-re(v) E a-(m+n)(v-). 
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I f m + n  < 0, it follows that  vamV_ = V (m). I f m + n  > 0, thenvamV_ is 

descended by a path of length m + n from V (-n). In either case we see that  

vamV_ is connected to P. Therefore T is connected. To see that  there are no 

circuits in T, observe first of all that,  since each vertex has only one in-edge, 

any circuit without backtracking must be a directed path. However, the power 

of a in each coset xV_ strictly increases in the direction of any path in T and 

so there can be no directed circuit unless a has finite order. 

The action of V__ ~ (~) on the vertices of T is the usual action of the group 

on a space of left V_-cosets. It is clear that  this action preserves the adjacency 

relation defined in (1). Denote this action by p: V__ ~ (a) --+ Aut(T). Then p 

is vertex and edge transitive on T and so the quotient graph is a loop. 

Denote the set of ends of T by cOT, the end of the path P corresponding to 

{ V(n) }~=1 by oo, and the other end of P by -cr  Then c~ acts as a translation of 

distance 1 on P with - e~  as the repelling end. Since every path in P descends 

ultimately from - ~  and it is the unique end of T having this property, - c r  

is fixed by p(V__ ~ (a)). This may also be shown directly by verifying that  

vamV (-r) = V (m-r) provided that  r is sufficiently large that  at-re(V) C V-. 

Recalling that  the automorphism group of T is itself a totally disconnected 

locally compact group when equipped with the topology of uniform convergence 

on compact sets, we are in a position to state the tree-representation theorem. 

THEOREM 4.1: Let G be a totally disconnected locally compact group, 

a an automorphism of G of infinite order and let V be tidy for a. Then 

V_- x (c~) -~ Aut(T) is a continuous representation p onto a closed subgroup 

of the automorphism group of a homogeneous tree T of degree s(~ -1) + 1. 

(1) The action of V__ >~ (a) on Aut(T): fixes an end, -cr is transitive on 

cOT \ { - c r  ) ; and the quotient graph is a loop. 

(2) The stabiliser of each end in cOT \ ( - o c }  is a conjugate of Vo ~ (a). The 

kernel of p is the largest compact normal a-stable subgroup of V__. 

(3) The image of V__ under p is the set of elliptic elements in p(V__ x (al). 

Proof: Stabilisers of vertices xV_ in T form a subbasis for the topology on 

Aut(T). Since p-l(stab(xV_))  = xV_x -1, which is open in V__ >~ (a), it 

follows that  p is continuous. The continuity of p and the compactness of V_ 

imply that  p(V__ ~ (a)) A stab(V (~ = p(V_) is compact and hence closed. 

Therefore p(V__ x (a)) is closed by [HR79, II.(5.9)]. 

(1) It remains only to show that  p is transitive on OT\  {-oc} and, for this, it 

suffices to show that  for each w E cOT\ {-cr  there is v E V__ such that  v. oo = 
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w. Let {vnanV_}n~=l be a path converging to w. Since (vnanV_, v~+la~+lV_) is 

an edge, it follows from (1) that  Vn+la~+l(V_) C Vnan(V-) for each n. Each of 

these sets is compact and so Nn~__l vnan(v- )  ~ 0. Choose v in this intersection, 

so that  van(V_) = Vna~(V_) for each n. Then 

v V  (n) : v o l n V _  : v o ~ n ( V _ ) o l  n : Vno~n(V_)oL n = v n a n p _  

for each n and it follows that  v �9 c~ = w. 

(2) For the first part, it suffices to show that  the stabiliser of oc equals V0 ~ (a). 

It is clear that  this group is contained in the stabiliser. Conversely, if x stabilises 

oc, then it leaves the path P invariant and in fact translates P by a distance, d 

say. Then Xa  - d  fixes every vertex on P.  Hence Xa  - d  E NnEZ a n ( V - )  -~ Vo and 

we have x E V0 >~ (a}. 

The kernel of p is the intersection of all the vertex stabilisers and is therefore 

a compact normal a-stable subgroup of V__. If M is any such subgroup, then 

it fixes a point, p say, in T because it is compact. Since M is also normal in 

V__ and a-invariant, it fixes every point in the V__ ~ (a)-orbit  ofp .  Since p is 

edge-transitive, it follows that  M fixes every point in T and so M is contained 

in the kernel of p. 

(3) Since the image of p fixes -c~ ,  if g E ira(p) fixes a point p, then it fixes 

every vertex on the path from - ~  to p. Hence g fixes a point if and only if 

there is a k C Z such that  g.V (k) -~ V (k) . The set of elliptics therefore coincides 

with 

U stab(Y(k)) M im(p) = U P(ak(V-)) = p(V__). I 
kEZ kEZ 

The representation p restricts to give a representation of Ua x (a} on T. It 

follows from Theorem 3.16 that,  for V__ metric, this is the same representation 

as obtained if Theorem 4.1 is applied with G equal to Ua. Hence all the as- 

sertions of Theorem 4.1 hold with V__ replaced by Us. However, more can be 

said about the representation of Us x (a}. 

THEOREM 4.2: Let G be a totally disconnected locally compact metric group 

and a an automorphism of G of infinite order. Let p be the representation of 

Us x (a) on the tree T as defined above. 

(1) The action of Us is transitive on OT \ {-c~}  and is simply transitive if 

and only if Us is closed. 

(2) If  Us is closed, then p is a topological isomorphism onto its image. 

Proof: (1) Theorem 4.1(1) shows that  Us is transtitive on the set OT \ {-c~}.  

Since, by Corollary 3.30, Us = U~Uo and since U0 is the stabiliser of c~, we 
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have 

OT\ {-oc} = Us"  oc = Us" ec. 

The action is simply transitive if and only if stab(oc) -- U0 M Us is trivial. 

Since U0 M Us is dense in U0, Theorem 3.32 shows that  U0 M Us is trivial if and 

only if Us is closed. 

(2) If Us is closed, then a is compactly contractive. Hence the compact kernel 

of p is trivial and p is faithful. I 

Subsection 3.2 examined the difference between the groups V__ and Us where 

a is respectively shrinking and contracting. Both groups act on T with the Us- 

action being the restriction of the V__-action. The next example shows that  

the difference between the groups may, or may not, be seen in the action on the 

tree. 

Example 4.3: (1) Let G be the group of upper triangular matrices in SL2(•p). 
The contraction group with respect to the automorphism a given by inner con- 

jugation by diag(p,p -1) is the group of strict upper triangular matrices. The 

subgroup of upper triangular matrices with entries in Zp is compact open in 

G and satisfies a(V) C_ V, hence is tidy by Example 2.3. The group V__ is 

then the subgroup of elements in G having diagonal entries in Z~. The tree 

representation p of V__ is seen to be the composite of the inclusion in SL2 (Qp) 

with the representation of SL2 (QB) on its Bruhat-Tits  tree. Since V__ properly 

contains U~, p distinguishes between these groups. 

(2) On the other hand, if we are given a closed contraction group Us we 

may construct a strictly larger group G, an extension of a to G and a tidy 

subgroup V for a acting on G with G = V__ such that  the tree representation p 

defined by V_ satisfies p(V__ ) = p(Ua) as follows. Take any nontrivial compact 

group K and define G by G := K x Us. Let a act trivially on K.  Choose 

a t i d y  subgroup O for a in Us. Then V := K x O is tidy for a in G and 

V__ = K x O__ = K x Us = G. Obviously p(V__) = p(U~). 

Part (2) of the example has V__ as the direct product of U~ and the kernel 

of p. That  is not special to this example. The kernel of p and Us are both 

closed normal subgroups of V__ and so their product is always a subgroup and 

it is closed because ker p is compact. Group isomorphism theorems plus the fact 

that,  if Us is closed, then Us M kerp is trivial imply the following result. 

PROPOSITION 4.4: Let V be tidy for the automorphism a of the totally 
disconnected locally compact metric group G. 

(1) Ifp(U,) = p(V__), then V__ = Uakerp.  
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(2) If, furthermore, Us is closed, then V__ = Us x ker p. 

Remark  4.5: Essentially the same tree as constructed here has been associ- 

ated with tidy subgroups and contraction groups elsewhere. In Theorem 3.4 of 

[M5102] a tree construction is used to translate the definition of tidy subgroup 

into permutation group theoretic terms. The rooted tree constructed there is a 

branch of the tree constructed above. Also, the underlying tree constructed in 

Theorem 4.1, but not the group representation p, is already implicit in Proposi- 

tion 3.7 in [Sie86], which studies the case where the contraction group is closed. 
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